The effect of eukaryotic release factor depletion on translation termination in human cell lines.

نویسندگان

  • Deanna M Janzen
  • Adam P Geballe
چکیده

Two competing events, termination and readthrough (or nonsense suppression), can occur when a stop codon reaches the A-site of a translating ribosome. Translation termination results in hydrolysis of the final peptidyl-tRNA bond and release of the completed nascent polypeptide. Alternatively, readthrough, in which the stop codon is erroneously decoded by a suppressor or near cognate transfer RNA (tRNA), results in translation past the stop codon and production of a protein with a C-terminal extension. The relative frequency of termination versus readthrough is determined by parameters such as the stop codon nucleotide context, the activities of termination factors and the abundance of suppressor tRNAs. Using a sensitive and versatile readthrough assay in conjunction with RNA interference technology, we assessed the effects of depleting eukaryotic releases factors 1 and 3 (eRF1 and eRF3) on the termination reaction in human cell lines. Consistent with the established role of eRF1 in triggering peptidyl-tRNA hydrolysis, we found that depletion of eRF1 enhances readthrough at all three stop codons in 293 cells and HeLa cells. The role of eRF3 in eukarytotic translation termination is less well understood as its overexpression has been shown to have anti-suppressor effects in yeast but not mammalian systems. We found that depletion of eRF3 has little or no effect on readthrough in 293 cells but does increase readthrough at all three stop codons in HeLa cells. These results support a direct role for eRF3 in translation termination in higher eukaryotes and also highlight the potential for differences in the abundance or activity of termination factors to modulate the balance of termination to readthrough reactions in a cell-type-specific manner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human eukaryotic release factor 3a depletion causes cell cycle arrest at G1 phase through inhibition of the mTOR pathway.

Eukaryotic release factor 3 (eRF3) is a GTPase associated with eRF1 in a complex that mediates translation termination in eukaryotes. Studies have related eRF3 with cell cycle regulation, cytoskeleton organization, and tumorigenesis. In mammals, two genes encode two distinct forms of eRF3, eRF3a and eRF3b, which differ in their N-terminal domains. eRF3a is the major factor acting in translation...

متن کامل

Backbone (1)H, (13)C and (15)N resonance assignments of the human eukaryotic release factor eRF1.

Eukaryotic translation termination is mediated by two interacting release factors, eukaryotic class 1 release factor (eRF1) and eukaryotic class 3 release factor (eRF3), which act cooperatively to ensure efficient stop codon recognition and fast polypeptide release. eRF1 consisting of three well-defined functional domains recognizes all three mRNA stop codons located in the A site of the small ...

متن کامل

Pre-Clinical and Clinical Data Confirm the Anticancer Effect of Deuterium Depletion

The two stable isotopes of hydrogen, protium (1H) and deuterium (2H) differ in their physicochemical nature. Deuterium-depleted water (DDW) significantly inhibited the growth rate of different tumor cell lines in culture media and xenotransplanted MDA-MB-231, MCF-7 human breast adenocarcinomas and PC-3 human prostate tumors in vivo. The apoptosis-triggering effect of DDW was demonstrat...

متن کامل

Nonsense-mediated mRNA decay among coagulation factor genes

Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation fact...

متن کامل

Inhibition of translation termination mediated by an interaction of eukaryotic release factor 1 with a nascent peptidyl-tRNA.

Expression of the human cytomegalovirus UL4 gene is inhibited by translation of a 22-codon-upstream open reading frame (uORF2). The peptide product of uORF2 acts in a sequence-dependent manner to inhibit its own translation termination, resulting in persistence of the uORF2 peptidyl-tRNA linkage. Consequently, ribosomes stall at the uORF2 termination codon and obstruct downstream translation. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 32 15  شماره 

صفحات  -

تاریخ انتشار 2004